Approximation of Rectangular Beta-Laguerre Ensembles and Large Deviations
نویسندگان
چکیده
Let λ1, · · · , λn be random eigenvalues coming from the beta-Laguerre ensemble with parameter p, which is a generalization of the real, complex and quaternion Wishart matrices of parameter (n, p). In the case that the sample size n is much smaller than the dimension of the population distribution p, a common situation in modern data, we approximate the beta-Laguerre ensemble by a beta-Hermite ensemble which is a generalization of the real, complex and quaternion Wigner matrices. As corollaries, when n is much smaller than p, we show that the largest and smallest eigenvalues of the complex Wishart matrix are asymptotically independent; we obtain the limiting distribution of the condition numbers as a sum of two i.i.d. random variables with a Tracy-Widom distribution, which is much different from the exact square case that n = p by Edelman (1988); we propose a test procedure for a spherical hypothesis test. By the same approximation tool, we obtain the asymptotic distribution of the smallest eigenvalue of the beta-Laguerre ensemble. In the second part of the paper, under the assumption that n is much smaller than p in a certain scale, we prove the large deviation principles for three basic statistics: the largest eigenvalue, the smallest eigenvalue and the empirical distribution of λ1, · · · , λn, where the last large deviation is derived by using a non-standard method.
منابع مشابه
Eigenvalues of Hermite and Laguerre ensembles: Large Beta Asymptotics
In this paper we examine the zero and first order eigenvalue fluctuations for the β-Hermite and β-Laguerre ensembles, using the matrix models we described in [5], in the limit as β → ∞. We find that the fluctuations are described by Gaussians of variance O(1/β), centered at the roots of a corresponding Hermite (Laguerre) polynomial. We also show that the approximation is very good, even for sma...
متن کاملSmall deviations for beta ensembles
We establish various small deviation inequalities for the extremal (soft edge) eigenvalues in the β-Hermite and β-Laguerre ensembles. In both settings, upper bounds on the variance of the largest eigenvalue of the anticipated order follow immediately.
متن کاملAsymptotic behavior of random determinants in the Laguerre, Gram and Jacobi ensembles
We consider properties of determinants of some random symmetric matrices issued from multivariate statistics: Wishart/Laguerre ensemble (sample covariance matrices), Uniform Gram ensemble (sample correlation matrices) and Jacobi ensemble (MANOVA). If n is the size of the sample, r ≤ n the number of variates and Xn,r such a matrix, a generalization of the Bartlett-type theorems gives a decomposi...
متن کاملControlling Nonlinear Processes, using Laguerre Functions Based Adaptive Model Predictive Control (AMPC) Algorithm
Laguerre function has many advantages such as good approximation capability for different systems, low computational complexity and the facility of on-line parameter identification. Therefore, it is widely adopted for complex industrial process control. In this work, Laguerre function based adaptive model predictive control algorithm (AMPC) was implemented to control continuous stirred tank rea...
متن کاملUniform approximation of eigenvalues in Laguerre and Hermite beta-ensembles by roots of orthogonal polynomials
We derive strong uniform approximations for the eigenvalues in general Laguerre and Hermite β-ensembles by showing that the maximal discrepancy between the suitably scaled eigenvalues and roots of orthogonal polynomials converges almost surely to zero when the dimension converges to infinity. We also provide estimates of the rate of convergence. In the special case of a normalized real Wishart ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013